Redox processes at a nanostructured interface under strong electric fields.

نویسندگان

  • Wolfram Steurer
  • Svetlozar Surnev
  • Falko P Netzer
  • Luca Sementa
  • Fabio R Negreiros
  • Giovanni Barcaro
  • Nicola Durante
  • Alessandro Fortunelli
چکیده

Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm(-1). Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios

In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

Effects of Statically Electric Fields on Freezing Parameters and Microstructures of Button Mushrooms (Agaricus bisporus)

Background and Objectives: Freezing under statically electric fields is one of the novel freezing methods to improve the quality of frozen products by controlling the nucleation process. The objective of this study was to investigate effects of freezing under electrostatic fields on the freezing parameters and microstructures of frozen button mushrooms. Materials and Methods: Mushroom samples w...

متن کامل

Hierarchical Design for Fabricating Cost-Effective High Performance Supercapacitors

wileyonlinelibrary.com internal/external surface sites of the nanostructure. Thus, the big challenge is in the nanostructure architecture where all of these parameters need to be optimized simultaneously. For the case of a supercapacitor, the nanostructure material is used as the framework to store and transport charges between two parallel electrodes. A conventional supercapacitor usually cons...

متن کامل

Control of Intense Laser- Atom Processes With Strong Static Fields

We analyze the use of strong static electric and magnetic fields for controlling two intense laser-atom processes: laser-assisted x-ray-atom scattering and highorder harmonic generation. We find that x-rays scattered from atoms in the presence of both a strong laser field and a strong static electric field can be boosted in energy many-fold by absorption of energy from the laser field. The spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 18  شماره 

صفحات  -

تاریخ انتشار 2014